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Abstract 

Different types of acoustic models created at Speech 
Technology Center are evaluated in this paper. Our main goal 
was to test how well those models work and choose one model 
for implementation in a large vocabulary continuous speech 
recognition (LVCSR) system for Russian which is under 
development now. Context-independent discrete and 
continuous models, as well as context-dependent continuous 
models, were built and evaluated on an isolated word 
recognition task. The results gained with the context-
dependent continuous model prove its consistency and show it 
can be used for acoustic modelling in a large vocabulary 
speech recognizer. 

1. Introduction 

Any modern LVCSR system can be roughly divided into three 
major parts: the acoustic model, the language model and the 
decoder. Such a division is inferred from the main formula of 
speech recognition. This is the formula for computing the 
probability that a certain linguistic unit W corresponds to a 
given acoustic signal O:  
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It is not possible to calculate this probability directly and 
Bayes rule is used to rewrite it as 
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Since the probability of the acoustic signal itself P(O) is 
constant for all recognition candidates and we are looking for 
the maximum score among them, this component can be 
dropped out. Finally, the task is reduced to calculating  
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P(O|W) is called acoustic likelihood (since it tells us how 
likely it is that the speech segment corresponds to some 
particular linguistic unit) and P(W) is the so-called prior 
probability (it corresponds to the likelihood of the linguistic 
unit itself, as it is in the language). The former is calculated by 
the acoustic component of a speech recognizer, while the 
calculation of the latter pertains to the language modelling 
component.  

Usually the basic unit of a language model is the word 
and the total score is obtained as the best path in recognition 
network which combines all possible word sequences together 
with individual acoustic likelihoods and priors for all possible 

units (words). Due to a huge search space in the case of 
LVCSR, finding the optimal path is a complicated task which 
calls for implementation of advanced network search 
techniques [1]. This is done by a special part of a speech 
recognizer conventionally called a decoder. 

At present one can claim there is no decently working 
LVCSR system for Russian. The work on a LVCSR system 
for the Russian language is being carried out at Speech 
Technology Center (http://www.speechpro.com). 
All the components mentioned above are being built from 
scratch using our own technologies. Those technologies are 
adapted to the peculiarities of the Russian language.  

This paper is focused on the acoustic model of the 
automatic speech recognition (ASR) system. However, other 
components are also briefly sketched in chapter 7 in order to 
provide the reader with an insight into the state-of-the-art in 
the ASR for Russian. 

At present most of ASR systems are based on the Hidden 
Markov Model (HMM) approach (see [2] for details). HMM 
is a powerful statistical approach which represents speech as a 
parameterized random process. Each modelled speech object 
(word, syllable, phoneme etc.) is represented by its own 
HMM. 

Previously at Speech Technology Center (STC) we used 
acoustic models based on HMMs for command recognition 
(i.e. small vocabulary isolated word recognition). Individual 
acoustic models were generated for whole words (commands) 
as homogeneous units. Good results of isolated word 
recognition were gained using this technique. However, this 
approach has insurmountable limitations which keep it within 
the command recognition domain only. It is virtually 
impossible to create such whole-word acoustic models in a 
large-vocabulary system. For modern LVCSR systems 
common size of the vocabulary is 65K words, but it may be 
extended up to several hundred thousand. That means 
acoustic models should be constructed for smaller units and 
then concatenated to model larger ones. Syllables, phonemes 
and even phoneme fragments were tested as such units.  

At present, context-independent phonemes (monophones) 
for medium size vocabulary recognition and context-
dependent phonemes (diphones and triphones) for LVCSR 
are used. This is because more precise acoustic description is 
needed to distinguish between thousands of words. In general, 
diphones and triphones are used to compensate for the effect 
of coarticulation in continuous speech. Coarticulation is the 
result of the fact that articulatory organs never get the static 
positions as for isolated sounds but rather show the movement 
in the needed direction. This direction depends both on 
preceding and succeeding phones. Coarticulation is not 
limited only to the neighbouring phones but may involve 
several phones in the context. However, only immediate 
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context is taken account of in case of diphones (only left 
neighbour) or triphones (both left and right neighbours). On 
the analogy, models which do not take account of context are 
called monophonic. 

The general structure of the paper is as follows. Issues 
regarding processing of audio signal and techniques of feature 
extraction are discussed in Chapter 2. Chapter 3 is devoted to 
the peculiarities of acoustic models structure and feature 
estimation. Results for different types of acoustic models and 
the evaluation of these results are presented in Chapters 4 and 
6 correspondingly. Chapter 5 shows the performance of the 
automatic monophone segmentation performed with the 
acoustic models described in this paper. Chapter 7 gives a 
short overview of the development of the speech recognizer 
on the whole. 

 

2. Speech Signal Processing and Feature 
Extraction  

Mel-frequency cepstral coefficients (MFCC) were chosen for 
preliminary processing of speech signal. MFCC are widely 
used in the field of ASR [3].  

We also developed a novel method of feature extraction 
by means of a special filter bank that consists of recursive 
filters of the second order. This method appeared to be more 
robust to high noise level in speech signals. When compared 
to MFCC, recognition results gained with our method 
appeared a bit worse for clean speech signals. However, for 
noisy signals, we get better performance starting from 15 dB 
level of signal/noise ratio. If this ratio is further decreased (i.e. 
the noise level grows up) the profit of using our method is 
further increased.  

At present, robustness to noise is one of the main issues in 
the field of ASR. It is very important to keep system 
performance stable even in the case heavily distorted speech 
is being recognized. The method sketched above (its thorough 
description calls for a separate paper) is implemented in the 
LVCSR system we are developing. However, MFCC 
coefficient approach was chosen in this paper just because the 
latter is conventionally used for the comparison of results 
between different systems.  

Input signal is quantized at 11025 Hz and transformed 
into a set of feature vectors. The signal is analyzed within a 
256-sample window with a 128-sample step.  
The signal is pre-emphasized in a usual way by a first order 
FIR filter: 
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where }1{ Nn K∈ ; 

N – window dimension;  
S(n) – signal samples; 
k – amplification coefficient. 

Hamming window is used for weakening signal distortion 
caused by the application of discrete window to a continuous 
signal. 

Human ear is known to perceive frequencies non-linearly 
in the audio spectrum [4]. As a result, an analyzer performing 
preprocessing of speech signal with a non-linear scale boosts 
the recognition rate. We used Mel-scale frequency filters as a 
rather conventional and wide-spread solution for this task. 

Amplitudes obtained from the set of triangle filters are highly 
correlated. Cosine transform (used to obtain cepstrum) was 
implemented for feature decorrelation: 
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where }1{ Mi K∈ ;  

M=12 – number of cepstral coefficients;  
N=20 – number of filters;  
mj – logarithmic amplitudes. 

In addition to 12 cepstral coefficients, the value of energy 
was added. It is calculated within the analysis window: 

 

∑
=

=
N

n
nsE

1

2log     (6) 

 
where sn – speech samples before processing;  
N – length of the analysis window. 

Precision of the recognition is increased if the basic 
parameters described above are supplemented with the first 
and the second time derivatives. These derivatives correspond 
to the speed and acceleration parameters (

�
 and 

� �
 

coefficients). Those are calculated for all 12 MFCC and for 
the energy. The dimension of the resulting feature vector is 39 
and it consists of 4 groups of features: 

• Energy, energy 
�

 and energy 
� �

; 
• 12 cepstral coefficients; 
• 12 

�
-features; 

• 12 
� �

-features. 

3.  Acoustic Models 

3.1. Model Parameters 

The acoustic model of a recognition system is a set of HMM 
events. Such events in acoustic modelling are usually 
allophones (monophones, diphones or triphones). Markov 

model ( )πλ ,,BA  of an acoustic event is one or several 

states, which are characterized by the following parameters: 
N – number of states; 
π – initial distribution of probabilities; 
A – transition (from one state to another) matrix; 
B – probabilistic density function in the feature space (so-
called emission probability). 

For discrete HMMs a codebook of feature space and the 
probabilistic density function is created. The latter is 
represented as a matrix of codewords probabilities for a given 

state )(kBi , where k is the word index in the codebook and 

i is the state number. 
In the case of continuous models probability density 

function B is represented by means of a combination of M 
Gaussian functions: 
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where x – observation vector; 
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cim – weight coefficient (contribution of a Gaussian 
component m to probability density function for the ith state); �

m – mean value of the feature vector for a Gaussian mixture 
component m; 
Um – covariation matrix for the mth feature component; 
G – multidimensional Gaussian function 
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where n – feature vector dimension; 
|U| – determinant of the covariation matrix U. 

Diagonal covariation matrixes were used in our study. On 
the whole, This approach is known as Gaussian Mixture 
Model (GMM). 

3.2. Model Topology 

The inhomogeneous left-to-right monophone model was 
used for acoustic modelling in the system presented in this 
paper: 

 

 

Figure 1: Acoustic Model Topology 

Each monophone is representd by 1-3 states, depending 
on its duration and its representation in the training corpus. 
State transition probabilities are not constant and depend on 
time already spent in the current state. Such a model is known 
as an Inhomogeneous Markov Model [5]. Jumps across the 
states are not allowed by the model topology. This way 
temporal state features contribute most to the formation of the 
accumulated probability. The extent of influence of state 
durations is optimized on the basis of recognition results. This 
is done by increasing or decreasing mean square deviations 
for histograms describing life time of the states. 

3.3. Model Types 

Manually segmented part of the database was used for the 
initial calculation of Gaussians that approximate probability 
density distributions in the feature space.  

At the beginning of the training procedure each state is 
described by only one Gaussian. Increase in the number of 
Gaussian functions per state is controlled by a threshold 
function based on the entropy measure. Since each acoustic 
feature vector consists of four groups of parameters, different 
sets of Gaussians were built for each group separately. 

Three types of models were tested for phoneme 
recognition task: 

1. Context-Independent discrete models. A word 
model is obtained by the concatenation of the 
monophone HMMs. The same monophones are 
described by one model. The number of 
monophones is equal to 40 in our case.  Emission 

probabilities are calculated on the basis of the 
codebook. 

2. Context-Independent continuous models. Models 
of this type share all the properties with the 
Context-Independent discrete models except for the 
fact that GMMs were used for the approximation of 
probability density functions (while discrete models 
use the codebook approach). A unique set of 
Gaussian functions is created for each model. 

3. Context-Dependent continuous models. A word 
model is obtained by the concatenation of the 
monophone models. However, those monophones 
are not estimated on the basis of all idem 
monophones in the training corpora (i.e. coming 
from other words). Certain monophones from the 
same word are only used for training. For example, 
when building the model for the word д о м , each 
constituent monophone model is estimated not on 
the basis of all instances of monophones ‘д ’, ‘ о ’, 
‘ м ’ in different words (as in the context-
independent models), but only on the basis of those 
monophones which occurred in different instances 
of the word д о м  in the training corpus. This way the 
context is taken into account. Each state model is 
described by its own set of Gaussian functions. 

4. Evaluation 

4.1. Training and Evaluation Corpora 

All the algorithms of the creation of acoustic models for 
monophones were trained and evaluated on the acoustic 
database of Speech Technology Center. It consists of 
recordings of 62 speakers (30 male and 32 female). The 
recognition dictionary for this database consists of 23 
commands. The commands included 10 digits from 0 to 9 and 
13 commands used to operate a cellular phone hands-free 
device. The commands were pronounced in an isolated 
manner. Speech was recorded in a car with a microphone used 
in a hands-free device and sampled at 11025 Hz. Car engine 
was idling during the process of recording. 

During the evaluation procedure 7 groups with 6 speakers 
in each were being successively excluded from the training 
corpus and used as the evaluation set. The rest of the corpus 
was used for training. 

4.2. Results 

Recognition results are presented in per cents in Table 1. The 
letters in the first column correspond to different groups of 
speakers mentioned in the previous section.  

The results obtained for the phoneme-based models 
described above are compared against the results for the 
whole-word recognition method (shown in the second 
column). In the case of whole-word recognition HMMs were 
constructed not for the constituent phonemes but for the 
whole words (i.e. pronunciation variants). The number of 
HMM states in this case is variable, depending on the number 
of phones in the word. Feature space was quantized. 
Probability density function for each state in the feature space 
is represented by a matrix of probability of codeword 
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Figure 2: Automatic Segmentation of Speech in Monophones 

 
occurrence in a given state. This approach has critical 
limitations described in Chapter 1. However, it secures good 
results for command recognition by default and can serve as a 
baseline in our evaluation.  

Table 1: Command Recognition Results 

 Whole-
word model 

Context-
Independent 

discrete 
model 

Context-
Independent 
continuous 

model 

Context-
Dependent 
continuous 

model 
A 98,36 93,99 98,36 100,0 
E 98,07 95,37 97,68 100,0 
G 98,12 94,84 98,12 100,0 
K 97,93 95,45 97,93 99,59 
L 100,0 97,13 97,54 100,0 
M 97,93 95,52 97,93 98,97 
N 98,37 95,42 98,04 98,69 

All 98,4 
(ERR=1,6) 

95,39 
(ERR=4,6) 

97,94 
(ERR=2,0) 

99,6 
(ERR=0,4) 

 
We also tested dynamic programming recognition 

methods on the same test material. The error rate of the 
whole-word speaker-independent ASR based on dynamic 
programming appeared at the level of 4%, which is 
significantly worse than for any of the continuous HMM-
based models described above. 

5. Continuous Speech Recognition 

The algorithms discussed in this paper were used in the 
LVCSR system which is currently under development. At first 
context-independent continuous models were chosen for 
building acoustic models. We are planning to switch to the 
triphone context-dependent models only when models of 
independent monophones are fully implemented. That is due 
to the fact trees of triphones (that take account of context) are 
to be build on the basis of the monophonic models.  

Acoustic models for Russian speech were built for 59 
independent monophones. We use 3 Gaussian functions for 

modelling energy features for each state, while features of 
other 3 groups discussed in chapter 2 are modelled with 6 
Gaussians on average. A phonetically balanced text read by 
203 speakers (111 male and 92 female) was used as a training 
corpus. Speech was recorded with a high quality microphone 
Philips SBC MD110, Sound Blaster Live! and was sampled at 
22050 Hz. 

The speech of 7 speakers was manually segmented and 
used at the initial phase of training. The rest of the corpus was 
segmented automatically on the basis of estimations obtained 
at the initial phase. An example of the automatic segmentation 
is presented in Figure 2. The segmentation of the fragment of 
a phrase “Н а  с л е д у ю щ е й  н е д е л е  с и н о п т и к и  о б е щ а ю т  п о т е п л е н и е ” (Warming is forecast next week) is shown on 
the waveform. 

We are not able to perform full-scale ASR evaluation yet, 
since not all components of the LVCSR system are ready. 
However, results of automatic segmentation can be 
considered as a tool for preliminary and rough evaluation of 
the acoustic model as a part of the recognition system. 
Automatic segmentation is performed by means of acoustic 
models. Those are initially trained on the basis of hand-
labeled part of the training corpus. Acoustic models obtained 
this are undertrained. However, it is very costly to segment 
manually a larger part of the corpus that is required for 
acoustic model training. That is why “initial” acoustic models 
are used to segment the rest of the corpus for which only the 
transcription (but not the positions of monophone boundaries) 
are known. Newly obtained segmented data is used for the re-
estimation of acoustic model parameters. That means the 
quality of automatic segmentation reflects the quality of 
acoustic models themselves. 

In out case, the quality of automatic monophone 
segmentation appears on the high level. As can be seen from 
Figure 1, most monophone boundaries are detected with high 
precision. However, this approach does not let evaluate the 
performance numerically, which is obviously its main 
shortcoming. 
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6. Conclusions 

Recognition results obtained for different phone models 
turned out to be on the same level as for an ad hoc whole-
word model. This tells us that the acoustic models we are 
planning to use in an LVCSR system are consistent and can 
be successfully implemented. 

As expected, the best recognition results were gained with 
context-dependent continuous models. Discrete models led to 
the 3 times increase in the error rate. That means using 
coherent GMMs for the estimation of the probability density 
function is highly beneficial.  

We claim the internal HMM structure we proposed is also 
coherent. This is proved by the comparison of the results 
gained for HMM and dynamic programming based models 
which show significant advantage of the former. Another 
proof is the high quality automatic monophone segmentation 
gained with the acoustic models we use. 

7. Parallel Work 

Our next step is to build context-dependent continuous model 
into the general frame of a LVCSR system. To be precise, we 
imply triphone models (mentioned in chapter 5) but not the 
ones described in section 3.3 as context-dependent models. 
The former are less context-dependend since they take account 
only of an immediate left and right context of a phone, while 
the latter were bound to a whole word. 

Building acoustic models into an LVCSR framework 
makes sense only if other parts (i.e. the language model and 
the decoder) of a recognition system are ready. At present 
those are still under construction, however, most of the work 
has already been completed. 

A tool for language modelling was initially developed at 
STC last year. This tool allows building two types of model: 
standard wordform-based and stem/inflexion ones. The 
necessity of introduction of morphological information into a 
language model results from the peculiarities of Russian as an 
inflective language. This feature of the language gives rise to 
a whole bunch of problems which are not that crucial for 
languages with a weak inflexional system (and relatively strict 
word order), like English. Most significant is the high OOV 
rate and impetuous growth of wordform-based pronunciation 
vocabulary when one tries to lower the size of the vocabulary 
down [6, 7]. Maintaining a huge vocabulary can be 
troublesome. Many decoders imply limitations on the 
vocabulary size (however, this is not the case for the decoder 
developed at STC). But much more important is that the 
quality of a pronunciation vocabulary can greatly influence 
the recognition rate, but at the same time it is hardly possible 
to perform manual checking and updating of a huge 
vocabulary. Even if such checking is performed only for a 
restricted set of words in the vocabulary, additional problems 
arise. For example, to change transcription in the root of a 
word, one would have to make the same changes in many 
other wordforms of this word. At the same time automatic 
approach is not expected to be easily implemented, since 
changes could be applied only to a subset of wordforms. In 
case a new pronunciation is to be added for some lemma, 
even more effort is required. That is why morphemic models 
are often suggested as a solution [8, 9, 10] to this problem. 
Morphological information allows keeping pronunciation 
vocabularies compact; another feature is that less training data 

is needed to train a morphologically-based LM. The 
morphological system we implemented is described in [11]. 
Now the language modelling tool is implemented as an SQL-
based application which makes the LM easy and fast to 
handle. 

 The decoder we use is a time-synchronous one-pass stack 
decoder. It allows handling huge vocabularies (hundreds of 
thousands of units) which makes it applicable to the 
wordform-based language model of the Russian language. 
Details regarding the decoder structure and its implementation 
can be found in [12]. 
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