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Abstract

Different types of acoustic models created at Speec
Technology Center are evaluated in this paper.rain goal
was to test how well those models work and choogsenoodel
for implementation in a large vocabulary continusgeech
recognition (LVCSR) system for Russian which is end
development now. Context-independent discrete and
continuous models, as well as context-dependeniimmus
models, were built and evaluated on an isolated dwor
recognition task. The results gained with the cxinte
dependent continuous model prove its consistendyshow it
can be used for acoustic modelling in a large volzaip
speech recognizer.

1

Any modern LVCSR system can be roughly divided itmee
major parts: the acoustic model, the language madelthe
decoder. Such a division is inferred from the nfarmula of
speech recognition. This is the formula for computihe
probability that a certain linguistic uni/ corresponds to a
given acoustic signaD:
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It is not possible to calculate this probabilityretitly and
Bayes rule is used to rewrite it as

P(OIW)PW)
P(O)

PIW|0) = @

Since the probability of the acoustic signal itsBfO) is
constant for all recognition candidates and wel@oking for
the maximum score among them, this component can be
dropped out. Finally, the task is reduced to calibud
P(O [W)PW) ©)
P(O|W) is called acoustic likelihood(since it tells us how
likely it is that the speech segment correspondssdame
particular linguistic unit) andP?(W) is the so-calledprior
probability (it corresponds to the likelihood ofetfinguistic
unit itself, as it is in the language). The forrieecalculated by
the acoustic component of a speech recognizer,ewthié
calculation of the latter pertains to the languagedelling
component.

Usually the basic unit of a language model is tleedw
and the total score is obtained as the best patécimgnition
network which combines all possible word sequenagsther
with individual acoustic likelihoods and priors falt possible

units (words). Due to a huge search space in tise och
LVCSR, finding the optimal path is a complicategktavhich
calls for implementation of advanced network search
techniques [1]. This is done by a special part afpaech
recognizer conventionally calleddacoder

At present one can claim there is no decently vmorki
LVCSR system for Russian. The work on a LVCSR syste
for the Russian language is being carried out ateSp
Technology Centerht t p: / / www. speechpr o. con).

All the components mentioned above are being Hroltn
scratch using our own technologies. Those techiedogre
adapted to the peculiarities of the Russian languag

This paper is focused on the acoustic model of the
automatic speech recognition (ASR) system. Howevttrer
components are also briefly sketched in chapter grder to
provide the reader with an insight into the stdtéhe-art in
the ASR for Russian.

At present most of ASR systems are based on theddid
Markov Model (HMM) approach (see [2] for detail§)MM
is a powerful statistical approach which represeptech as a
parameterized random process. Each modelled spdxett
(word, syllable, phoneme etc.) is represented By oivn
HMM.

Previously at Speech Technology Center (STC) wel use
acoustic models based on HMMs for command recamniti
(i.e. small vocabulary isolated word recognitiomdividual
acoustic models were generated for whole words ifcamas)
as homogeneous units. Good results of isolated word
recognition were gained using this technique. Hawrgethis
approach has insurmountable limitations which kieepthin
the command recognition domain only. It is virtyall
impossible to create such whole-word acoustic nwitela
large-vocabulary system. For modern LVCSR systems
common size of the vocabulary is 65K words, buhdty be
extended up to several hundred thousand. That means
acoustic models should be constructed for smalhés wand
then concatenated to model larger ones. Syllaplesnemes
and even phoneme fragments were tested as sush unit

At present, context-independent phonemes (monofione
for medium size vocabulary recognition and context-
dependent phonemes (diphones and triphones) forIR/C
are used. This is because more precise acousticmtém is
needed to distinguish between thousands of wondgemeral,
diphones and triphones are used to compensatédazftect
of coarticulation in continuous speech. Coartidatatis the
result of the fact that articulatory organs nevet the static
positions as for isolated sounds but rather shewrtbvement
in the needed direction. This direction dependsh bon
preceding and succeeding phones. Coarticulatiomads
limited only to the neighbouring phones but mayoiwe
several phones in the context. However, only imaedi
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context is taken account of in case of diphonedy(beft
neighbour) or triphones (both left and right neights). On
the analogy, models which do not take account ofexd are
called monophonic.

The general structure of the paper is as followsués
regarding processing of audio signal and technig@iésature
extraction are discussed in Chapter 2. Chapterd@vsted to
the peculiarities of acoustic models structure deature
estimation. Results for different types of acoustimdels and
the evaluation of these results are presented aptérs 4 and
6 correspondingly. Chapter 5 shows the performaricie
automatic monophone segmentation performed with the
acoustic models described in this paper. Chaptgiv@s a
short overview of the development of the speeclgeizer
on the whole.

2. Speech Signal Processing and Feature
Extraction

Mel-frequency cepstral coefficients (MFCC) were o for
preliminary processing of speech signal. MFCC aidely
used in the field of ASR [3].

We also developed a novel method of feature exbract
by means of a special filter bank that consistseairsive
filters of the second order. This method appeapebet more
robust to high noise level in speech signals. Wtmmpared
to MFCC, recognition results gained with our method
appeared a bit worse for clean speech signals. twéor
noisy signals, we get better performance startinogif15 dB
level of signal/noise ratio. If this ratio is fuethdecreased (i.e.
the noise level grows up) the profit of using ouethod is
further increased.

At present, robustness to noise is one of the msaires in
the field of ASR. It is very important to keep ®yrst
performance stable even in the case heavily destaspeech
is being recognized. The method sketched abovéh@ireugh
description calls for a separate paper) is impléggein the
LVCSR system we are developing. However, MFCC
coefficient approach was chosen in this papertjasause the
latter is conventionally used for the comparisonredults
between different systems.

Input signal is quantized at 11025 Hz and transéam
into a set of feature vectors. The signal is aralywithin a
256-sample window with a 128-sample step.

The signal is pre-emphasized in a usual way bysa dirder
FIR filter:

S'(n)=S(n)-kCLS(n-1) (4)

wheren[J{1...N} ;

N — window dimension;
S(n)- signal samples;
k — amplification coefficient.

Hamming window is used for weakening signal disort
caused by the application of discrete window t@atiouous
signal.

Human ear is known to perceive frequencies noratige
in the audio spectrum [4]. As a result, an analymsforming
preprocessing of speech signal with a non-lineatesboosts
the recognition rate. We used Mel-scale frequeilard as a
rather conventional and wide-spread solution fas tiask.

Amplitudes obtained from the set of triangle fiftemre highly
correlated. Cosine transform (used to obtain cepgtrwas
implemented for feature decorrelation:

- |23 PlMiGe (5)
C sz:;mj co{ N (i O.5)j

wherei [J{1...M};

M=12 — number of cepstral coefficients;
N=20 — number of filters;
m — logarithmic amplitudes.
In addition to 12 cepstral coefficients, the vatiienergy
was added. It is calculated within the analysisdwin:

N
E=log} s ®)
n=1

wheres, — speech samples before processing;
N — length of the analysis window.

Precision of the recognition is increased if thesiba
parameters described above are supplemented vetiirgt
and the second time derivatives. These derivateeespond
to the speed and acceleration parameteks agd AA
coefficients). Those are calculated for all 12 MF&a for
the energy. The dimension of the resulting featector is 39
and it consists of 4 groups of features:

*  Energy, energy and energyA;
. 12 cepstral coefficients;

o 12 A-features;

* 12 AA-features.

3. Acoustic Models

3.1. Modd Parameters

The acoustic model of a recognition system is ad8&tMM
events. Such events in acoustic modelling are lysual
allophones (monophones, diphones or triphones).kddar

model /](A, B,ﬂ) of an acoustic event is one or several

states, which are characterized by the followingpeters:
N — number of states;
77— initial distribution of probabilities;
A — transition (from one state to another) matrix;
B — probabilistic density function in the featureasp (so-
calledemission probability

For discrete HMMs a codebook of feature space hed t
probabilistic density function is created. The dattis
represented as a matrix of codewords probabilitiea given

state B, (K) , wherek is the word index in the codebook and

i is the state number.

In the case of continuous models probability dgnsit
function B is represented by means of a combinatioriviof
Gaussian functions:

M
Bi(x) :ZcimG[X!um7Um] (7)
m-1

wherex — observation vector;



Cm — Wweight coefficient (contribution of a Gaussian
componentn to probability density function for th& state);

Im — Mean value of the feature vector for a Gaussieture
componentn;

Unm — covariation matrix for the fhfeature component;

G — multidimensional Gaussian function

(@'Y

wheren — feature vector dimension;
|U| — determinant of the covariation matrix U.

Diagonal covariation matrixes were used in our st@h
the whole, This approach is known as Gaussian Ivéxtu
Model (GMM).

®

G, 4, U, = expt > (x-4)"U (x4

3.2. Model Topology

The inhomogeneous left-to-right monophone model was
used for acoustic modelling in the system presemtethis
paper:

Figure 1 Acoustic Model Topology

Each monophone is representd by 1-3 states, dependi
on its duration and its representation in the ingrcorpus.
State transition probabilities are not constant dedend on
time already spent in the current state. Such aeirieknown
as anlnhomogeneous Markov Modg]. Jumps across the
states are not allowed by the model topology. T/
temporal state features contribute most to the dtion of the
accumulated probability. The extent of influence stéte
durations is optimized on the basis of recognitiesults. This
is done by increasing or decreasing mean squaraties
for histograms describing life time of the states.

3.3. Model Types

Manually segmented part of the database was ugethéo
initial calculation of Gaussians that approximatebability
density distributions in the feature space.

At the beginning of the training procedure eachesta
described by only one Gaussian. Increase in thebeurof
Gaussian functions per state is controlled by asthold
function based on the entropy measure. Since ecmhstc
feature vector consists of four groups of paramsedifferent
sets of Gaussians were built for each group seglgrat

Three types of models were tested for
recognition task:

1. Context-Independent discrete models. A word
model is obtained by the concatenation of the
monophone HMMs. The same monophones are
described by one model. The number of
monophones is equal to 40 in our case. Emission

phoneme
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probabilities are calculated on the basis of the
codebook.

2. Context-Independent continuous models. Models
of this type share all the properties with the
Context-Independent discrete models except for the
fact that GMMs were used for the approximation of
probability density functions (while discrete maglel
use the codebook approach). A unique set of
Gaussian functions is created for each model.

3. Context-Dependent continuous models. A word
model is obtained by the concatenation of the
monophone models. However, those monophones
are not estimated on the basis of all idem
monophones in the training corpora (i.e. coming
from other words). Certain monophones from the
same word are only used for training. For example,
when building the model for the wormbum, each
constituent monophone model is estimated not on
the basis of all instances of monophongs “o’,

‘M’ in different words (as in the context-

independent models), but only on the basis of those

monophones which occurred in different instances
of the wordoox in the training corpus. This way the
context is taken into account. Each state model is
described by its own set of Gaussian functions.

4. Evaluation

4.1. Training and Evaluation Corpora

All the algorithms of the creation of acoustic misdéor
monophones were trained and evaluated on the a&coust
database of Speech Technology Center. It consi$ts o
recordings of 62 speakers (30 male and 32 femdleg
recognition dictionary for this database consists 23
commands. The commands included 10 digits from @ and
13 commands used to operate a cellular phone Hegwls-
device. The commands were pronounced in an isolated
manner. Speech was recorded in a car with a miomphsed
in a hands-free device and sampled at 11025 Hze@gine
was idling during the process of recording.

During the evaluation procedure 7 groups with Gakpes
in each were being successively excluded from thiming
corpus and used as the evaluation set. The rebeaforpus
was used for training.

4.2. Results

Recognition results are presented in per centabiell. The
letters in the first column correspond to differgmbups of
speakers mentioned in the previous section.

The results obtained for the phoneme-based models
described above are compared against the resultshéo
whole-word recognition method (shown in the second
column). In the case of whole-word recognition HMere
constructed not for the constituent phonemes buttlie
whole words (i.e. pronunciation variants). The nemiof
HMM states in this case is variable, dependinghennumber
of phones in the word. Feature space was quantized.
Probability density function for each state in fhature space
is represented by a matrix of probability of codedvo
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Figure 2 Automatic Segmentation of Speech in Monophones

occurrence in a given state. This approach hascalrit
limitations described in Chapter 1. However, itises good
results for command recognition by default and senve as a
baseline in our evaluation.

Table T Command Recognition Results

Whole- Context- Context- | Context-
word model| Independent|Independen) Dependent
discrete continuous | continuous

model model model

A 98,36 93,99 98,36 100,0
E 98,07 95,37 97,68 100,0
G 98,12 94,84 98,12 100,0
K 97,93 95,45 97,93 99,59
L 100,0 97,13 97,54 100,0
M 97,93 95,52 97,93 98,97
N 98,37 95,42 98,04 98,69

All 98,4 95,39 97,94 99,6
(ERR=1,6)| (ERR=4,6) | (ERR=2,0)| (ERR=0,4)

We also tested dynamic programming recognition
methods on the same test material. The error ratthe
whole-word speaker-independent ASR based on dynamic
programming appeared at the level of 4%, which is
significantly worse than for any of the continuodM-
based models described above.

5. Continuous Speech Recognition

The algorithms discussed in this paper were usedh@n
LVCSR system which is currently under developménffirst
context-independent continuous models were chosan f
building acoustic models. We are planning to switchthe
triphone context-dependent models only when modsls
independent monophones are fully implemented. Thalue
to the fact trees of triphones (that take accotimbatext) are
to be build on the basis of the monophonic models.

Acoustic models for Russian speech were built r 5
independent monophones. We use 3 Gaussian fundtons

modelling energy features for each state, whildufes of
other 3 groups discussed in chapter 2 are modelidd 6
Gaussians on average. A phonetically balancedread by
203 speakers (111 male and 92 female) was usetraisiag
corpus. Speech was recorded with a high qualityoplone
Philips SBC MD110, Sound Blaster Live! and was Saahjat
22050 Hz.

The speech of 7 speakers was manually segmented and
used at the initial phase of training. The reghefcorpus was
segmented automatically on the basis of estimatidmained
at the initial phase. An example of the automatignsentation
is presented in Figure 2. The segmentation ofridignient of
a phrase Ha crenyiomeil Helene CHHONTHKHA OOEIIAlOT
nmorerwterne” (Warming is forecast next week) is shown on
the waveform.

We are not able to perform full-scale ASR evaluatyet,
since not all components of the LVCSR system asslye
However, results of automatic segmentation can be
considered as a tool for preliminary and rough @atbn of
the acoustic model as a part of the recognitionegys
Automatic segmentation is performed by means ofistio
models. Those are initially trained on the basishahd-
labeled part of the training corpus. Acoustic meddbtained
this are undertrained. However, it is very costlysegment
manually a larger part of the corpus that is resfliifor
acoustic model training. That is why “initial” acstic models
are used to segment the rest of the corpus forhadiidy the
transcription (but not the positions of monophobaridaries)
are known. Newly obtained segmented data is usetthéore-
estimation of acoustic model parameters. That mehas
quality of automatic segmentation reflects the iqyabf
acoustic models themselves.

In out case, the quality of automatic monophone
segmentation appears on the high level. As carebe §om
Figure 1, most monophone boundaries are detectidhigh
precision. However, this approach does not letuatal the
performance numerically, which is obviously its mai
shortcoming.



6. Conclusions

Recognition results obtained for different phone deis
turned out to be on the same level as for an adwiude-
word model. This tells us that the acoustic modets are
planning to use in an LVCSR system are consistedtcan
be successfully implemented.

As expected, the best recognition results wereeghivith
context-dependent continuous models. Discrete radddlto
the 3 times increase in the error rate. That ma#sisg
coherent GMMs for the estimation of the probabitignsity
function is highly beneficial.

We claim the internal HMM structure we proposedlgo
coherent. This is proved by the comparison of thsults
gained for HMM and dynamic programming based models
which show significant advantage of the former. theo
proof is the high quality automatic monophone sagaté®n
gained with the acoustic models we use.

7. Parallel Work

Our next step is to build context-dependent comtirsumodel
into the general frame of a LVCSR system. To beipeg we
imply triphone models (mentioned in chapter 5) bhat the
ones described in section 3.3 as context-depenuedels.
The former are less context-dependend since ttkeyaecount
only of an immediate left and right context of aoph, while
the latter were bound to a whole word.

Building acoustic models into an LVCSR framework
makes sense only if other parts (i.e. the langumagdel and
the decoder) of a recognition system are readypr@sent
those are still under construction, however, méshe work
has already been completed.

A tool for language modelling was initially devekip at
STC last year. This tool allows building two typsfsmodel:
standard wordform-based and stem/inflexion onese Th
necessity of introduction of morphological informoat into a
language model results from the peculiarities o$tan as an
inflective language. This feature of the languayegrise to
a whole bunch of problems which are not that ctufda
languages with a weak inflexional system (and inedft strict
word order), like English. Most significant is theggh OOV
rate and impetuous growth of wordform-based proiation
vocabulary when one tries to lower the size ofibeabulary
down [6, 7]. Maintaining a huge vocabulary can be
troublesome. Many decoders imply limitations on the
vocabulary size (however, this is not the caselferdecoder
developed at STC). But much more important is tiiat
quality of a pronunciation vocabulary can greatijluence
the recognition rate, but at the same time it igllygpossible
to perform manual checking and updating of a huge
vocabulary. Even if such checking is performed ofdy a
restricted set of words in the vocabulary, addéigoroblems
arise. For example, to change transcription in ribat of a
word, one would have to make the same changes ity ma
other wordforms of this word. At the same time awdtic
approach is not expected to be easily implemensetse
changes could be applied only to a subset of wamtfo In
case a new pronunciation is to be added for sommenée
even more effort is required. That is why morphemizdels
are often suggested as a solution [8, 9, 10] t® phoblem.
Morphological information allows keeping pronunoat
vocabularies compact; another feature is thatttagsing data
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is needed to train a morphologically-based LM. The
morphological system we implemented is describefiLi].
Now the language modelling tool is implemented aSQL-
based application which makes the LM easy and fast
handle.

The decoder we use is a time-synchronous onespasis
decoder. It allows handling huge vocabularies (heds of
thousands of units) which makes it applicable t@ th
wordform-based language model of the Russian laggyua
Details regarding the decoder structure and itdémpntation
can be found in [12].
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